How do drugs pass through our cell membranes?

Mohamad Ali Salloum, PharmD • July 11, 2022

Share

  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button

Have you ever wondered how medicines reach their target? For example, how paracetamol goes from the guts in the digestive system to the brain passing through a lot of membranes and which are considered intact and impermeable to a lot of substances. Or how does oxygen pass from the air in the lungs into our bloodstream and then finally into the tissues and cells?


One keyword can answer these questions:


Transporters,

 

...well actually sometimes it doesn’t require a transporter.

 

 

To know how this happens, First, let’s discuss the membranes.


Cell membranes have two key characteristics:


1)  Semi-permeability, where only certain materials may freely cross – large and charged substances are typically blocked.

2)  Selectivity, where membrane proteins regulate the passage of material that cannot freely cross. These membrane proteins are called transporters.


Thus, the passage of molecules and substances across a biological membrane may occur either passively or actively.



1)   Passive Transport


This type of transport is the most common mechanism of absorption for drugs. It is the passage of molecules from a high concentration location to a low concentration location (along the concentration gradient). This is just simply how nature works. And this happens so easily that it does not need the energy to do it. Thus, NO ATP hydrolysis is required. And that’s why it’s called “passive”.


OKAY, Mohamad-Ali…. we now understand that no energy is needed, but how do molecules go from one side to another?


a) Simple diffusion:


Since the core of the cellular membrane is lipophilic (Figure.1), thus, any lipophilic molecule (like ciprofloxacin) will have no problem just diffusing through the membrane without any effort.

The same happens with very small molecules like O2  and CO2.

b) Osmosis:


Passive transport of water molecules (H2O) from the low concentration to the high concentration of solute. This usually happens since the cellular membrane will not allow the solute to pass through it and thus water will always try to equalize the concentration of a solute across the membrane. Not to mention that water can pass easily through the membrane.


c) Facilitated Diffusion:


Small charged molecules (i.e. ions) and large molecules (i.e. sucrose) will not be able to pass easily like the lipophilic or very small molecules. They will need some help, but not energy. They just need a tunnel to pass through. AND who provides these tunnel services?


You guessed it right…

 

the MEMBRANE PROTEINS, where they will help these molecules to pass through the lipophilic cellular membranes.


Examples:



- Ions will be able to pass through their ion channels. ( Sodium, Potassium, Calcium) (Fig.2)



- Large molecules will have their carrier proteins. (Glucose)(Fig.3)

d) Paracellular Transport:


In blood vessels, paracellular passage of solutes and fluid through intercellular gaps is sufficiently large that passive transfer across the endothelium of capillaries and postcapillary venules is generally limited by blood flow. Capillaries of the CNS and a variety of epithelial tissues have tight junctions that limit the paracellular movement of drugs. Water-soluble compounds can use this transport method, like glucose and amino acids.



2)   Active Transport


When you jump into the pool, you don’t need energy to go down (only gravity is needed). But if you wanted to go up, you need energy to go up again to the jumping point.


Now let’s downscale this example into molecules.


Nature allows the movement of molecules along their concentration gradient with no energy needed. BUT, what if the molecules are required to move against their concentration gradient? (from the lower concentration to the higher concentration side)


Cells use different energy sources to allow this active transport through their membranes.


a)  Primary (direct) active transport:


It involves hydrolysis of ATP to provide energy, like the Na+/K+-ATPase.


How?


Swipe through the pictures below and read the caption for more details.


Some transporters move just one molecule against their gradient (i.e. uniport transport) and other transporters can move 2 molecules against their gradient. (Co-transport through Na+/K+-ATPase)


b)     Secondary (indirect) active transport:


You know that we can gain energy from the waterfall, right?

The energy that the falling water creates can be converted to electricity that we can use.


That’s how secondary active transport works.


A molecule that is moving from its high concentration to the low concentration will not require energy, however, the energy that it creates with this movement will be utilized to move another molecule from its low concentration to its higher concentration side.


Scientifically speaking, this type of active transport includes the coupling of the required molecule A with another molecule B that is moving “along” its electrochemical gradient.


c)      Endocytosis:

When the molecules are very large and they are lipid insoluble such that they will not be able to pass through the membrane or any channel that facilitates the passage, they will bind to a specific receptor on the cell membrane. This binding will trigger the formation of a pocket in the cell membrane and eventually pinching down and the formation of an intracellular vesicle that contains the molecule. (Fig.9, Fig.10) (Swipe to see both Figures.)


d)     Pinocytosis:



It literally means “cell drinking”. The difference between Pinocytosis and endocytosis is that Endocytosis requires binding to a receptor to trigger the process.


Pinocytosis is the process of ingestion of extracellular fluids where molecules close to the membrane will be ingested too. It is considered an active transport since it requires energy.

Summary:

Transport Method Active/Passive Material Transported
Simple Diffusion Passive Small molecular weight material
Osmosis Passive Water
Facilitated Transport/ Diffusion Passive Sodium, Potassium, Calcium, Glucose
Paracellular Transport Passive Water-soluble compounds like Glucose and Amin acids
Primary Active Transport Active Sodium, Potassium, Calcium
Secondary Active Transport Active Amino Acids, Lactose
Receptor-mediated endocytosis Active Large quantities of macromolecules
Pinocytosis Active Small molecules (they are ingested alongside with water

Check out below our animated video about the transporters!


Resources:


 1)     Bertram G. Katzung, Marieke Kruidering-Hall, Anthony J. Trevor - Katzung & Trevor’s Pharmacology Examination and Board Review-McGraw-Hill Education (2019)

2)     Goodman & Gilman 13e

List of Services

    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button

    ABOUT THE AUTHOR

    Mohamad-Ali Salloum, PharmD

    Mohamad Ali Salloum LinkedIn Profile

    Mohamad-Ali Salloum is a Pharmacist and science writer. He loves simplifying science to the general public and healthcare students through words and illustrations. When he's not working, you can usually find him in the gym, reading a book, or learning a new skill.

    Share

    Recent articles:

    By Mohamad-Ali Salloum, PharmD February 14, 2026
    A clear, evidence‑based guide to Ramadan fasting, explaining its metabolic, mental, and cardiometabolic benefits, plus practical nutrition, hydration, sleep, and medication strategies for healthy adults and high‑risk patients.
    By Mohamad-Ali Salloum, PharmD February 13, 2026
    A practical guide to shifting from blaming “human error” to applying ICH GCP E6(R3) system‑level quality, Quality by Design, and risk‑based oversight to prevent repeat deviations in clinical trials.
    By Mohamad-Ali Salloum, PharmD February 10, 2026
    Learn 5 Whys and Fishbone (Ishikawa) for Root Cause Analysis in clinical research, with practical examples and an interactive quiz—no fluff, just clarity.
    By Mohamad-Ali Salloum, PharmD February 9, 2026
    A clear, practical guide to CAPA for Clinical Research Associates—covering corrective and preventive actions, real‑world scenarios, and an interactive quiz to reinforce learning.
    By Mohamad-Ali Salloum, PharmD February 5, 2026
    Boost your health with a simple 30‑minute morning walk backed by science—better heart health, mood, sleep, and energy.
    By Mohamad-Ali Salloum, PharmD February 3, 2026
    References: Gunes IB, Gunes A. Association Between Eyelid Twitching and Digital Screen Time, Uncorrected Refractive Error, Intraocular Pressure, and Blood Electrolyte Imbalances. Cureus . 2024;16(9):e69249. Available from: https://www.cureus.com/articles/291035-association-between-eyelid-twitching-and-digital-screen-time-uncorrected-refractive-error-intraocular-pressure-and-blood-electrolyte-imbalances Banik R, Miller NR. Chronic myokymia limited to the eyelid is a benign condition. J Neuroophthalmol . 2004;24(4):290–2. Available from: https://scholars.mssm.edu/en/publications/chronic-myokymia-limited-to-the-eyelid-is-a-benign-condition-2 Hallett M. Blepharospasm: recent advances. Neurology . 2002;59(11):1759–60. Available from: https://europepmc.org/abstract/MED/12434791 Defazio G, Livrea P. Epidemiology of primary blepharospasm. Mov Disord . 2002;17(1):7–12. Available from: https://europepmc.org/article/MED/11835433 Zeppieri M, Ameer MA, Jahngir MU, Patel BC. Meige Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://europepmc.org/article/MED/30020730 Zhang Y, Adamec I, Habek M. Superior oblique myokymia: a meta-analysis. J Ophthalmol . 2018;2018:7290547. Available from: https://doi.org/10.1155/2018/7290547 Costa J, Espírito-Santo C, Borges A, et al. Botulinum toxin type A therapy for blepharospasm. Cochrane Database Syst Rev . 2020;11:CD004900. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004900.pub2/abstract Khalkhali M. Topiramate-induced persistent eyelid myokymia. Case Rep Psychiatry . 2016;2016:7901085. Available from: https://europepmc.org/articles/PMC4886081/
    By Mohamad-Ali Salloum, PharmD February 1, 2026
    References: Sen A, Tai XY. Sleep duration and executive function in adults. Curr Neurol Neurosci Rep. 2023;23:801–813. [link.springer.com] Nature Research Intelligence. Sleep deprivation and cognitive performance. Nature Portfolio. 2023. Available from: https://www.nature.com/… [nature.com] Skourti E, Simos P, Zampetakis A, et al. Long-term associations between objective sleep and verbal memory performance. Front Neurosci. 2023;17:1265016. [frontiersin.org] Hauglund NL, Andersen M, Tokarska K, et al. Norepinephrine‑mediated slow vasomotion drives glymphatic clearance during sleep. Cell. 2025;188(3):606‑622.e17. [cell.com] Shirolapov IV, Zakharov AV, Smirnova DA, et al. The role of the glymphatic clearance system in sleep–wake interactions and neurodegeneration. Neurosci Behav Physiol. 2024;54:199–204. [link.springer.com] Kong Y, Yu B, Guan G, et al. Effects of sleep deprivation on sports performance: a systematic review and meta-analysis. Front Physiol. 2025;16:1544286. [frontiersin.org] Gong M, Sun M, Sun Y, et al. Effects of acute sleep deprivation on sporting performance in athletes. Nat Sci Sleep. 2024;16:—. [tandfonline.com] Dean B, Hartmann T, Wingfield G, et al. Sleep restriction between consecutive days of exercise impairs cycling performance. J Sleep Res. 2023;32(3):e13857. [onlinelibr....wiley.com] Mah CD, Mah KE, Kezirian EJ, Dement WC. The effects of sleep extension on athletic performance in collegiate basketball players. Sleep. 2011;34(7):943–950. [psycnet.apa.org] Cunha LA, Costa JA, Marques EA, et al. Impact of sleep interventions on athletic performance: a systematic review. Sports Med Open. 2023;9:58. [link.springer.com] Teece AR, Beaven CM, Argus CK, et al. Daytime naps improve afternoon power and perceptual measures in elite rugby union athletes. Sleep. 2023;46(12):zsad133. [academic.oup.com] Mesas AE, Núñez de Arenas-Arroyo S, Martinez-Vizcaino V, et al. Daytime napping and cognitive/physical sport performance: meta-analysis of RCTs. Br J Sports Med. 2023;57(7):417–27. [bjsm.bmj.com] Haines Roberts SS, Teo WP, Warmington SA. Effects of training and competition on the sleep of elite athletes. Br J Sports Med. 2019;53(8):513–522. [bjsm.bmj.com] Walsh NP, Halson SL, Sargent C, et al. Sleep and the athlete: 2021 expert consensus recommendations. Br J Sports Med. 2021;55(7):356–368. [bjsm.bmj.com] Janse van Rensburg DC, Fowler PM, Racinais S. Practical tips to manage travel fatigue and jet lag in athletes. Br J Sports Med. 2021;55(15):821–822. [bjsm.bmj.com] Watson NF, Badr MS, Belenky G, et al. Recommended amount of sleep for a healthy adult: AASM/SRS consensus statement. Sleep. 2015;38(6):843–844. [aasm.org] Centers for Disease Control and Prevention. FastStats: Sleep in adults. CDC. 2024. Available from: https://www.cdc.gov/sleep/… [cdc.gov]
    By Mohamad-Ali Salloum, PharmD January 30, 2026
    References: Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463‑E472. [academic.oup.com] Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light‑emitting eReaders negatively affects sleep, circadian timing, and next‑morning alertness. Proc Natl Acad Sci USA. 2015;112(4):1232‑1237. [hms.harvard.edu] Schöllhorn I, Stefani O, Lucas RJ, et al. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol. 2023;6:1090. [nature.com] He J‑W, Tu Z‑H, Xiao L, Su T, Tang Y‑X. Effect of restricting bedtime mobile phone use on sleep, arousal, mood, and working memory: A randomized pilot trial. PLoS One. 2020;15(2):e0228756. [journals.plos.org] Hartstein LE, Mathew GM, Reichenberger DA, et al. The impact of screen use on sleep health across the lifespan: a National Sleep Foundation consensus statement. Sleep Health. 2024;10(4):373‑384. [sleephealt…ournal.org] Höhn C, Hahn MA, Gruber G, et al. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun. 2024;6(3):fcae173. Finucane E, O’Brien A, Treweek S, et al. Does reading a book in bed make a difference to sleep? The People’s Trial—an online, pragmatic randomized trial. Trials. 2021;22:873. [link.springer.com] Ong JC, Manber R, Segal Z, Xia Y, Shapiro S, Wyatt JK. A randomized controlled trial of mindfulness meditation for chronic insomnia. Sleep. 2014;37(9):1553‑1563. [academic.oup.com] , [mindfulchair.com] He X, Pan B, Ma N, et al. The association of screen time and the risk of sleep outcomes: a systematic review and meta‑analysis. Front Psychiatry. 2025;16:1640263. Shechter A, Quispe KA, Mizhquiri Barbecho JS, et al. Interventions to reduce short‑wavelength light at night and their effects on sleep: systematic review and meta‑analysis. SLEEP Advances. 2020;1(1):zpaa002. [academic.oup.com]
    By Mohamad-Ali Salloum, PharmD January 29, 2026
    References: Harkin B, Webb TL, Chang BPI, Prestwich A, Conner M, Kellar I, et al. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence. Psychol Bull . 2016;142(2):198–229. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000025.pdf Compernolle S, DeSmet A, Poppe L, Crombez G, De Bourdeaudhuij I, Cardon G, et al. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act . 2019;16(1):63. Available from: https://link.springer.com/article/10.1186/s12966-019-0824-3 Patel ML, Brooks TL, Bennett GG. Consistent self‑monitoring in a commercial app‑based intervention for weight loss: results from a randomized trial. J Behav Med . 2020;43:391–401. Available from: https://link.springer.com/article/10.1007/s10865-019-00091-8 Patel ML, Hopkins CM, Brooks TL, Bennett GG. Comparing self-monitoring strategies for weight loss in a smartphone app: randomized controlled trial. JMIR Mhealth Uhealth . 2019;7(2):e12209. Available from: https://mhealth.jmir.org/2019/2/e12209/ Lally P, Van Jaarsveld CHM, Potts HWW, Wardle J. How are habits formed: Modelling habit formation in the real world. Eur J Soc Psychol . 2010;40(6):998–1009. Available from: https://repositorio.ispa.pt/bitstream/10400.12/3364/1/IJSP_998-1009.pdf Singh B, Murphy A, Maher C, Smith AE. Time to form a habit: A systematic review and meta-analysis of health behaviour habit formation and its determinants. Healthcare (Basel) . 2024;12(23):2488. Available from: https://www.mdpi.com/2227-9032/12/23/2488 Gollwitzer PM, Sheeran P. Implementation intentions and goal achievement: A meta‑analysis of effects and processes. In: Advances in Experimental Social Psychology . 2006;38:69–119. Available from: https://www.researchgate.net/publication/37367696 Adriaanse MA, Gollwitzer PM, De Ridder DTD, De Wit JBF, Kroese FM. Breaking habits with implementation intentions: A test of underlying processes. Pers Soc Psychol Bull . 2011;37(4):502–13. Available from: https://dspace.library.uu.nl/bitstream/handle/1874/380229/0146167211399102.pdf Palmer CA, Bower JL, Cho KW, Clementi MA, Lau S, Oosterhoff B, et al. Sleep loss and emotion: A systematic review and meta-analysis of over 50 years of experimental research. Psychol Bull . 2023;149(11):2314–48. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000410.pdf Kong Y, Yu B, Guan G, Wang Y, He H. Effects of sleep deprivation on sports performance and perceived exertion in athletes and non-athletes: a systematic review and meta-analysis. Front Physiol . 2025;16:1544286. Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2025.1544286/full Tadros M, Newby JM, Li S, Werner‑Seidler A. Psychological treatments to improve sleep quality in university students: systematic review and meta-analysis. PLoS One . 2025;20(2):e0317125. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317125 Locke EA, Latham GP. Building a practically useful theory of goal setting and task motivation: A 35‑year odyssey. Am Psychol . 2002;57(9):705–17. Available from: https://med.stanford.edu/content/dam/sm/s-spire/documents/PD.locke-and-latham-retrospective_Paper.pdf
    More Posts