Why VCT Scans Can’t Be Used on Dogs?

Mohamad-Ali Salloum, PharmD • October 6, 2024

Share

  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button

Volumetric Computed Tomography (VCT) scans have revolutionized medical imaging for humans, providing detailed 3D images of the body with minimal discomfort. However, when it comes to our furry friends, VCT scans aren’t typically used. Here’s why: 


1) Anatomical Differences 


The primary reason VCT scans aren’t used on dogs is due to the significant anatomical differences between humans and dogs. VCT scanners are calibrated and designed to capture human body structures accurately. Dogs, on the other hand, have different bone densities, organ placements, and overall body structures that might not be accurately captured by a VCT scanner designed for humans. This can lead to less precise images and potentially inaccurate diagnoses. 


2) Size and Positioning 


VCT scanners are built to accommodate the size and positioning of human patients. Humans generally have a standard size and shape that these machines are designed to handle. Dogs, however, come in a wide variety of sizes and shapes, from tiny Chihuahuas to large Great Danes. Positioning a dog correctly in a machine designed for humans can be challenging and may not yield the best results. 


3) Motion and Sedation 


One of the key requirements for a successful VCT scan is that the patient remains still during the procedure. While humans can follow instructions to stay still, dogs often need to be sedated to achieve the same level of stillness. Sedation in animals can be more complex and carries its own risks, especially in a machine not designed for their use. This adds an additional layer of complexity to using VCT scans on dogs. 


4) Specialized Veterinary Equipment 


Veterinary medicine has its own set of specialized imaging equipment, such as veterinary-specific CT and MRI machines. These machines are tailored to the needs of animals and are designed to capture the unique anatomical details of dogs and other animals. They provide the necessary adjustments and calibrations to ensure accurate and safe imaging for veterinary patients. 


5) Radiation Safety 


The radiation dose and safety protocols for VCT scans are established based on human studies. Using these machines on dogs without proper adjustments could pose unnecessary risks. Veterinary-specific imaging equipment is designed with the appropriate safety measures for animals, ensuring that they receive the correct amount of radiation for accurate imaging without undue risk. 


BUT WHAT CAN WE USE TO SCAN OUR FURRY FRIENDS?!



There are several imaging techniques specifically designed for veterinary use that can effectively scan dogs. Here are some of the most common ones: 


1. X-rays (Radiography) 


X-rays are widely used in veterinary practices to create images of bones, organs, and other internal structures. They are particularly useful for detecting fractures, tumors, and foreign objects


2. Ultrasound (Ultrasonography) 


Ultrasound uses sound waves to create images of the inside of the body. It’s commonly used to examine soft tissues, such as organs and blood vessels, and is particularly useful for diagnosing conditions like heart disease and abdominal issues


3. CT Scans (Computed Tomography) 


CT scans provide detailed cross-sectional images of the body and are useful for diagnosing complex conditions, such as tumors, internal injuries, and bone disorders. Veterinary-specific CT scanners are designed to accommodate the anatomical differences of animals


4. MRI (Magnetic Resonance Imaging) 


MRI uses magnetic fields and radio waves to produce detailed images of soft tissues, such as the brain, spinal cord, and muscles. It’s particularly useful for diagnosing neurological conditions and soft tissue injuries. Like CT scans, MRIs require the dog to be sedated or anesthetized to ensure they remain still during the procedure.


5. Nuclear Medicine 


This technique involves the use of small amounts of radioactive material to diagnose and treat diseases. It can provide information about the function of organs and tissues, which is useful for diagnosing conditions like cancer and thyroid disorders


Conclusion 


While VCT technology is advanced and highly effective for human diagnostics, veterinary medicine relies on equipment specifically designed for animals to ensure accurate and safe imaging. The anatomical differences, size and positioning challenges, need for sedation, and radiation safety concerns all contribute to why VCT scans aren’t typically used on dogs. Instead, veterinarians use specialized imaging tools that are better suited to capture the unique details of our beloved pets, ensuring they receive the best possible care. 

 



List of Services

    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button

    ABOUT THE AUTHOR

    Mohamad-Ali Salloum, PharmD

    Mohamad Ali Salloum LinkedIn Profile

    Mohamad-Ali Salloum is a Pharmacist and science writer. He loves simplifying science to the general public and healthcare students through words and illustrations. When he's not working, you can usually find him in the gym, reading a book, or learning a new skill.

    Share

    Recent articles:

    By Mohamad-Ali Salloum, PharmD February 10, 2026
    Learn 5 Whys and Fishbone (Ishikawa) for Root Cause Analysis in clinical research, with practical examples and an interactive quiz—no fluff, just clarity.
    By Mohamad-Ali Salloum, PharmD February 9, 2026
    A clear, practical guide to CAPA for Clinical Research Associates—covering corrective and preventive actions, real‑world scenarios, and an interactive quiz to reinforce learning.
    By Mohamad-Ali Salloum, PharmD February 5, 2026
    Boost your health with a simple 30‑minute morning walk backed by science—better heart health, mood, sleep, and energy.
    By Mohamad-Ali Salloum, PharmD February 3, 2026
    References: Gunes IB, Gunes A. Association Between Eyelid Twitching and Digital Screen Time, Uncorrected Refractive Error, Intraocular Pressure, and Blood Electrolyte Imbalances. Cureus . 2024;16(9):e69249. Available from: https://www.cureus.com/articles/291035-association-between-eyelid-twitching-and-digital-screen-time-uncorrected-refractive-error-intraocular-pressure-and-blood-electrolyte-imbalances Banik R, Miller NR. Chronic myokymia limited to the eyelid is a benign condition. J Neuroophthalmol . 2004;24(4):290–2. Available from: https://scholars.mssm.edu/en/publications/chronic-myokymia-limited-to-the-eyelid-is-a-benign-condition-2 Hallett M. Blepharospasm: recent advances. Neurology . 2002;59(11):1759–60. Available from: https://europepmc.org/abstract/MED/12434791 Defazio G, Livrea P. Epidemiology of primary blepharospasm. Mov Disord . 2002;17(1):7–12. Available from: https://europepmc.org/article/MED/11835433 Zeppieri M, Ameer MA, Jahngir MU, Patel BC. Meige Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://europepmc.org/article/MED/30020730 Zhang Y, Adamec I, Habek M. Superior oblique myokymia: a meta-analysis. J Ophthalmol . 2018;2018:7290547. Available from: https://doi.org/10.1155/2018/7290547 Costa J, Espírito-Santo C, Borges A, et al. Botulinum toxin type A therapy for blepharospasm. Cochrane Database Syst Rev . 2020;11:CD004900. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004900.pub2/abstract Khalkhali M. Topiramate-induced persistent eyelid myokymia. Case Rep Psychiatry . 2016;2016:7901085. Available from: https://europepmc.org/articles/PMC4886081/
    By Mohamad-Ali Salloum, PharmD February 1, 2026
    References: Sen A, Tai XY. Sleep duration and executive function in adults. Curr Neurol Neurosci Rep. 2023;23:801–813. [link.springer.com] Nature Research Intelligence. Sleep deprivation and cognitive performance. Nature Portfolio. 2023. Available from: https://www.nature.com/… [nature.com] Skourti E, Simos P, Zampetakis A, et al. Long-term associations between objective sleep and verbal memory performance. Front Neurosci. 2023;17:1265016. [frontiersin.org] Hauglund NL, Andersen M, Tokarska K, et al. Norepinephrine‑mediated slow vasomotion drives glymphatic clearance during sleep. Cell. 2025;188(3):606‑622.e17. [cell.com] Shirolapov IV, Zakharov AV, Smirnova DA, et al. The role of the glymphatic clearance system in sleep–wake interactions and neurodegeneration. Neurosci Behav Physiol. 2024;54:199–204. [link.springer.com] Kong Y, Yu B, Guan G, et al. Effects of sleep deprivation on sports performance: a systematic review and meta-analysis. Front Physiol. 2025;16:1544286. [frontiersin.org] Gong M, Sun M, Sun Y, et al. Effects of acute sleep deprivation on sporting performance in athletes. Nat Sci Sleep. 2024;16:—. [tandfonline.com] Dean B, Hartmann T, Wingfield G, et al. Sleep restriction between consecutive days of exercise impairs cycling performance. J Sleep Res. 2023;32(3):e13857. [onlinelibr....wiley.com] Mah CD, Mah KE, Kezirian EJ, Dement WC. The effects of sleep extension on athletic performance in collegiate basketball players. Sleep. 2011;34(7):943–950. [psycnet.apa.org] Cunha LA, Costa JA, Marques EA, et al. Impact of sleep interventions on athletic performance: a systematic review. Sports Med Open. 2023;9:58. [link.springer.com] Teece AR, Beaven CM, Argus CK, et al. Daytime naps improve afternoon power and perceptual measures in elite rugby union athletes. Sleep. 2023;46(12):zsad133. [academic.oup.com] Mesas AE, Núñez de Arenas-Arroyo S, Martinez-Vizcaino V, et al. Daytime napping and cognitive/physical sport performance: meta-analysis of RCTs. Br J Sports Med. 2023;57(7):417–27. [bjsm.bmj.com] Haines Roberts SS, Teo WP, Warmington SA. Effects of training and competition on the sleep of elite athletes. Br J Sports Med. 2019;53(8):513–522. [bjsm.bmj.com] Walsh NP, Halson SL, Sargent C, et al. Sleep and the athlete: 2021 expert consensus recommendations. Br J Sports Med. 2021;55(7):356–368. [bjsm.bmj.com] Janse van Rensburg DC, Fowler PM, Racinais S. Practical tips to manage travel fatigue and jet lag in athletes. Br J Sports Med. 2021;55(15):821–822. [bjsm.bmj.com] Watson NF, Badr MS, Belenky G, et al. Recommended amount of sleep for a healthy adult: AASM/SRS consensus statement. Sleep. 2015;38(6):843–844. [aasm.org] Centers for Disease Control and Prevention. FastStats: Sleep in adults. CDC. 2024. Available from: https://www.cdc.gov/sleep/… [cdc.gov]
    By Mohamad-Ali Salloum, PharmD January 30, 2026
    References: Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463‑E472. [academic.oup.com] Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light‑emitting eReaders negatively affects sleep, circadian timing, and next‑morning alertness. Proc Natl Acad Sci USA. 2015;112(4):1232‑1237. [hms.harvard.edu] Schöllhorn I, Stefani O, Lucas RJ, et al. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol. 2023;6:1090. [nature.com] He J‑W, Tu Z‑H, Xiao L, Su T, Tang Y‑X. Effect of restricting bedtime mobile phone use on sleep, arousal, mood, and working memory: A randomized pilot trial. PLoS One. 2020;15(2):e0228756. [journals.plos.org] Hartstein LE, Mathew GM, Reichenberger DA, et al. The impact of screen use on sleep health across the lifespan: a National Sleep Foundation consensus statement. Sleep Health. 2024;10(4):373‑384. [sleephealt…ournal.org] Höhn C, Hahn MA, Gruber G, et al. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun. 2024;6(3):fcae173. Finucane E, O’Brien A, Treweek S, et al. Does reading a book in bed make a difference to sleep? The People’s Trial—an online, pragmatic randomized trial. Trials. 2021;22:873. [link.springer.com] Ong JC, Manber R, Segal Z, Xia Y, Shapiro S, Wyatt JK. A randomized controlled trial of mindfulness meditation for chronic insomnia. Sleep. 2014;37(9):1553‑1563. [academic.oup.com] , [mindfulchair.com] He X, Pan B, Ma N, et al. The association of screen time and the risk of sleep outcomes: a systematic review and meta‑analysis. Front Psychiatry. 2025;16:1640263. Shechter A, Quispe KA, Mizhquiri Barbecho JS, et al. Interventions to reduce short‑wavelength light at night and their effects on sleep: systematic review and meta‑analysis. SLEEP Advances. 2020;1(1):zpaa002. [academic.oup.com]
    By Mohamad-Ali Salloum, PharmD January 29, 2026
    References: Harkin B, Webb TL, Chang BPI, Prestwich A, Conner M, Kellar I, et al. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence. Psychol Bull . 2016;142(2):198–229. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000025.pdf Compernolle S, DeSmet A, Poppe L, Crombez G, De Bourdeaudhuij I, Cardon G, et al. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act . 2019;16(1):63. Available from: https://link.springer.com/article/10.1186/s12966-019-0824-3 Patel ML, Brooks TL, Bennett GG. Consistent self‑monitoring in a commercial app‑based intervention for weight loss: results from a randomized trial. J Behav Med . 2020;43:391–401. Available from: https://link.springer.com/article/10.1007/s10865-019-00091-8 Patel ML, Hopkins CM, Brooks TL, Bennett GG. Comparing self-monitoring strategies for weight loss in a smartphone app: randomized controlled trial. JMIR Mhealth Uhealth . 2019;7(2):e12209. Available from: https://mhealth.jmir.org/2019/2/e12209/ Lally P, Van Jaarsveld CHM, Potts HWW, Wardle J. How are habits formed: Modelling habit formation in the real world. Eur J Soc Psychol . 2010;40(6):998–1009. Available from: https://repositorio.ispa.pt/bitstream/10400.12/3364/1/IJSP_998-1009.pdf Singh B, Murphy A, Maher C, Smith AE. Time to form a habit: A systematic review and meta-analysis of health behaviour habit formation and its determinants. Healthcare (Basel) . 2024;12(23):2488. Available from: https://www.mdpi.com/2227-9032/12/23/2488 Gollwitzer PM, Sheeran P. Implementation intentions and goal achievement: A meta‑analysis of effects and processes. In: Advances in Experimental Social Psychology . 2006;38:69–119. Available from: https://www.researchgate.net/publication/37367696 Adriaanse MA, Gollwitzer PM, De Ridder DTD, De Wit JBF, Kroese FM. Breaking habits with implementation intentions: A test of underlying processes. Pers Soc Psychol Bull . 2011;37(4):502–13. Available from: https://dspace.library.uu.nl/bitstream/handle/1874/380229/0146167211399102.pdf Palmer CA, Bower JL, Cho KW, Clementi MA, Lau S, Oosterhoff B, et al. Sleep loss and emotion: A systematic review and meta-analysis of over 50 years of experimental research. Psychol Bull . 2023;149(11):2314–48. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000410.pdf Kong Y, Yu B, Guan G, Wang Y, He H. Effects of sleep deprivation on sports performance and perceived exertion in athletes and non-athletes: a systematic review and meta-analysis. Front Physiol . 2025;16:1544286. Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2025.1544286/full Tadros M, Newby JM, Li S, Werner‑Seidler A. Psychological treatments to improve sleep quality in university students: systematic review and meta-analysis. PLoS One . 2025;20(2):e0317125. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317125 Locke EA, Latham GP. Building a practically useful theory of goal setting and task motivation: A 35‑year odyssey. Am Psychol . 2002;57(9):705–17. Available from: https://med.stanford.edu/content/dam/sm/s-spire/documents/PD.locke-and-latham-retrospective_Paper.pdf
    By Mohamad-Ali Salloum, PharmD January 16, 2026
    Reference: ACRP. “ICH E6(R2) to ICH E6(R3) Comparison.” (Jan 28, 2025) — terminology & essential records: PDF Clinical Trials Toolkit. “Summary of Key Changes in ICH E6(R3).” (Mar 25, 2025) — proportionality, QbD, safety reporting: Article PharmaEduCenter. “Key changes between ICH GCP E6 R3 and E6 R2.” (Aug 10, 2025) — structure & glossary: Blog CITI Program. “Navigating the Transition from ICH E6(R2) to ICH E6(R3).” (Mar 12, 2025) — consent & site practices: Blog IntuitionLabs. “ICH E6 (R3) Explained.” (Updated Jan 13, 2026) — rationale, data governance: Deep dive
    By Mohamad-Ali Salloum, PharmD January 16, 2026
    More Posts