How Clinical Research Associates Can Stay Compliant With HIPAA & HITECH

Mohamad-Ali Salloum, PharmD • January 16, 2026

Share

  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
How Clinical Research Associates Can Stay Compliant With HIPAA & HITECH
Clinical Research · Privacy & Compliance

A practical guide for modern clinical research monitoring

Estimated read time: 6–7 minutes

TL;DR: If it identifies a patient, it’s PHI—and it must be protected. Use only secure, sponsor‑approved systems, access the minimum necessary, never export or transmit PHI in reports or emails, and escalate any suspected exposure immediately.

Clinical Research Associates (CRAs) play a frontline role in safeguarding the integrity of clinical trials. Beyond protocol adherence and data accuracy, CRAs must protect something equally important: patient privacy.

If you work on U.S.-based studies—or global studies that touch U.S. sites—two laws determine how patient information must be handled: HIPAA(Health Insurance Portability and Accountability Act) and HITECH(Health Information Technology for Economic and Clinical Health Act). Both set strict requirements for how Protected Health Information (PHI) is accessed, shared, stored, and secured.

Understanding PHI: What CRAs Need to Know

PHI is any patient information that can identify an individual. HIPAA lists 18 identifiers (e.g., name, address, DOB, MRN, full‑face photos). CRAs encounter PHI most during source data verification, EMR review, labs, clinic notes, and imaging.

Rule #1: If it identifies a patient, it’s PHI—and it must be protected.

Applying the Minimum Necessary Rule

HIPAA requires accessing only the information needed for the task at hand. For CRAs, that means:

  • Review only records relevant to enrolled study subjects
  • Avoid browsing unrelated chart sections
  • Do not request extra PHI that isn’t required for monitoring

Using the Right Technology—Securely

HITECH strengthened HIPAA’s digital security expectations. CRAs should follow strict technology practices.

Always use:

  • Sponsor‑approved EDC, CTMS, and eTMF systems
  • Encrypted email and secure portals for file exchange
  • Company‑issued devices with strong passwords and MFA
  • VPN when accessing systems remotely

Never use:

  • Personal email or messaging apps to view or share PHI
  • Screenshots or photos of PHI
  • Unencrypted USB drives
  • Personal cloud storage for study materials
If it’s not secure, it’s not compliant.

Remote & Onsite Monitoring: A Privacy Checklist

During onsite visits:

  • Never take PHI offsite
  • View PHI only in designated monitoring areas
  • Keep screens/documents out of public view
  • Make no handwritten notes with identifiers

During remote monitoring:

  • Use sponsor‑approved remote SDV platforms
  • Ensure screen shares exclude PHI unless explicitly permitted
  • Do not accept PHI via unencrypted email
  • Control your environment during screen share (close windows, prevent access)

Secure Your Workspace—Physical and Digital

Digital hygiene:

  • Lock your screen whenever you step away
  • Use strong, unique passwords and MFA
  • Avoid public Wi‑Fi—or use a VPN
  • Don’t store PHI locally on your device

Physical security:

  • Keep materials in zipped/locked bags; never leave docs in cars or public areas
  • Shred notes if they contain sensitive data
  • Do not carry paper PHI from a site

Reporting Incidents: When in Doubt, Escalate

HITECH expanded breach‑notification requirements. CRAs must promptly report:

  • Missing or stolen laptops/phones
  • PHI emailed to the wrong recipient or sent unencrypted
  • Viewing an incorrect subject’s chart
  • Any suspected unauthorized PHI exposure

CRAs don’t investigate— they escalate. Fast reporting protects patients and the study.

Compliance Is a Habit, Not a Task

The most compliant CRAs:

  • Understand what constitutes PHI
  • Use only secure, approved systems
  • Follow sponsor, CRO, and site SOPs
  • Keep data secure in all environments
  • Report incidents immediately
  • Avoid introducing PHI into study communications

Final Takeaway

For CRAs, HIPAA and HITECH compliance is about respecting the dignity and privacy of every study participant. Apply these principles consistently to protect patients, uphold data integrity, and strengthen the credibility of your work.



List of Services

    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button
    • Slide title

      Write your caption here
      Button

    ABOUT THE AUTHOR

    Mohamad-Ali Salloum, PharmD

    Mohamad Ali Salloum LinkedIn Profile

    Mohamad-Ali Salloum is a Pharmacist and science writer. He loves simplifying science to the general public and healthcare students through words and illustrations. When he's not working, you can usually find him in the gym, reading a book, or learning a new skill.

    Share

    Recent articles:

    By Mohamad-Ali Salloum, PharmD February 5, 2026
    Boost your health with a simple 30‑minute morning walk backed by science—better heart health, mood, sleep, and energy.
    By Mohamad-Ali Salloum, PharmD February 3, 2026
    References: Gunes IB, Gunes A. Association Between Eyelid Twitching and Digital Screen Time, Uncorrected Refractive Error, Intraocular Pressure, and Blood Electrolyte Imbalances. Cureus . 2024;16(9):e69249. Available from: https://www.cureus.com/articles/291035-association-between-eyelid-twitching-and-digital-screen-time-uncorrected-refractive-error-intraocular-pressure-and-blood-electrolyte-imbalances Banik R, Miller NR. Chronic myokymia limited to the eyelid is a benign condition. J Neuroophthalmol . 2004;24(4):290–2. Available from: https://scholars.mssm.edu/en/publications/chronic-myokymia-limited-to-the-eyelid-is-a-benign-condition-2 Hallett M. Blepharospasm: recent advances. Neurology . 2002;59(11):1759–60. Available from: https://europepmc.org/abstract/MED/12434791 Defazio G, Livrea P. Epidemiology of primary blepharospasm. Mov Disord . 2002;17(1):7–12. Available from: https://europepmc.org/article/MED/11835433 Zeppieri M, Ameer MA, Jahngir MU, Patel BC. Meige Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://europepmc.org/article/MED/30020730 Zhang Y, Adamec I, Habek M. Superior oblique myokymia: a meta-analysis. J Ophthalmol . 2018;2018:7290547. Available from: https://doi.org/10.1155/2018/7290547 Costa J, Espírito-Santo C, Borges A, et al. Botulinum toxin type A therapy for blepharospasm. Cochrane Database Syst Rev . 2020;11:CD004900. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004900.pub2/abstract Khalkhali M. Topiramate-induced persistent eyelid myokymia. Case Rep Psychiatry . 2016;2016:7901085. Available from: https://europepmc.org/articles/PMC4886081/
    By Mohamad-Ali Salloum, PharmD February 1, 2026
    References: Sen A, Tai XY. Sleep duration and executive function in adults. Curr Neurol Neurosci Rep. 2023;23:801–813. [link.springer.com] Nature Research Intelligence. Sleep deprivation and cognitive performance. Nature Portfolio. 2023. Available from: https://www.nature.com/… [nature.com] Skourti E, Simos P, Zampetakis A, et al. Long-term associations between objective sleep and verbal memory performance. Front Neurosci. 2023;17:1265016. [frontiersin.org] Hauglund NL, Andersen M, Tokarska K, et al. Norepinephrine‑mediated slow vasomotion drives glymphatic clearance during sleep. Cell. 2025;188(3):606‑622.e17. [cell.com] Shirolapov IV, Zakharov AV, Smirnova DA, et al. The role of the glymphatic clearance system in sleep–wake interactions and neurodegeneration. Neurosci Behav Physiol. 2024;54:199–204. [link.springer.com] Kong Y, Yu B, Guan G, et al. Effects of sleep deprivation on sports performance: a systematic review and meta-analysis. Front Physiol. 2025;16:1544286. [frontiersin.org] Gong M, Sun M, Sun Y, et al. Effects of acute sleep deprivation on sporting performance in athletes. Nat Sci Sleep. 2024;16:—. [tandfonline.com] Dean B, Hartmann T, Wingfield G, et al. Sleep restriction between consecutive days of exercise impairs cycling performance. J Sleep Res. 2023;32(3):e13857. [onlinelibr....wiley.com] Mah CD, Mah KE, Kezirian EJ, Dement WC. The effects of sleep extension on athletic performance in collegiate basketball players. Sleep. 2011;34(7):943–950. [psycnet.apa.org] Cunha LA, Costa JA, Marques EA, et al. Impact of sleep interventions on athletic performance: a systematic review. Sports Med Open. 2023;9:58. [link.springer.com] Teece AR, Beaven CM, Argus CK, et al. Daytime naps improve afternoon power and perceptual measures in elite rugby union athletes. Sleep. 2023;46(12):zsad133. [academic.oup.com] Mesas AE, Núñez de Arenas-Arroyo S, Martinez-Vizcaino V, et al. Daytime napping and cognitive/physical sport performance: meta-analysis of RCTs. Br J Sports Med. 2023;57(7):417–27. [bjsm.bmj.com] Haines Roberts SS, Teo WP, Warmington SA. Effects of training and competition on the sleep of elite athletes. Br J Sports Med. 2019;53(8):513–522. [bjsm.bmj.com] Walsh NP, Halson SL, Sargent C, et al. Sleep and the athlete: 2021 expert consensus recommendations. Br J Sports Med. 2021;55(7):356–368. [bjsm.bmj.com] Janse van Rensburg DC, Fowler PM, Racinais S. Practical tips to manage travel fatigue and jet lag in athletes. Br J Sports Med. 2021;55(15):821–822. [bjsm.bmj.com] Watson NF, Badr MS, Belenky G, et al. Recommended amount of sleep for a healthy adult: AASM/SRS consensus statement. Sleep. 2015;38(6):843–844. [aasm.org] Centers for Disease Control and Prevention. FastStats: Sleep in adults. CDC. 2024. Available from: https://www.cdc.gov/sleep/… [cdc.gov]
    By Mohamad-Ali Salloum, PharmD January 30, 2026
    References: Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463‑E472. [academic.oup.com] Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light‑emitting eReaders negatively affects sleep, circadian timing, and next‑morning alertness. Proc Natl Acad Sci USA. 2015;112(4):1232‑1237. [hms.harvard.edu] Schöllhorn I, Stefani O, Lucas RJ, et al. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol. 2023;6:1090. [nature.com] He J‑W, Tu Z‑H, Xiao L, Su T, Tang Y‑X. Effect of restricting bedtime mobile phone use on sleep, arousal, mood, and working memory: A randomized pilot trial. PLoS One. 2020;15(2):e0228756. [journals.plos.org] Hartstein LE, Mathew GM, Reichenberger DA, et al. The impact of screen use on sleep health across the lifespan: a National Sleep Foundation consensus statement. Sleep Health. 2024;10(4):373‑384. [sleephealt…ournal.org] Höhn C, Hahn MA, Gruber G, et al. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun. 2024;6(3):fcae173. Finucane E, O’Brien A, Treweek S, et al. Does reading a book in bed make a difference to sleep? The People’s Trial—an online, pragmatic randomized trial. Trials. 2021;22:873. [link.springer.com] Ong JC, Manber R, Segal Z, Xia Y, Shapiro S, Wyatt JK. A randomized controlled trial of mindfulness meditation for chronic insomnia. Sleep. 2014;37(9):1553‑1563. [academic.oup.com] , [mindfulchair.com] He X, Pan B, Ma N, et al. The association of screen time and the risk of sleep outcomes: a systematic review and meta‑analysis. Front Psychiatry. 2025;16:1640263. Shechter A, Quispe KA, Mizhquiri Barbecho JS, et al. Interventions to reduce short‑wavelength light at night and their effects on sleep: systematic review and meta‑analysis. SLEEP Advances. 2020;1(1):zpaa002. [academic.oup.com]
    By Mohamad-Ali Salloum, PharmD January 29, 2026
    References: Harkin B, Webb TL, Chang BPI, Prestwich A, Conner M, Kellar I, et al. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence. Psychol Bull . 2016;142(2):198–229. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000025.pdf Compernolle S, DeSmet A, Poppe L, Crombez G, De Bourdeaudhuij I, Cardon G, et al. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act . 2019;16(1):63. Available from: https://link.springer.com/article/10.1186/s12966-019-0824-3 Patel ML, Brooks TL, Bennett GG. Consistent self‑monitoring in a commercial app‑based intervention for weight loss: results from a randomized trial. J Behav Med . 2020;43:391–401. Available from: https://link.springer.com/article/10.1007/s10865-019-00091-8 Patel ML, Hopkins CM, Brooks TL, Bennett GG. Comparing self-monitoring strategies for weight loss in a smartphone app: randomized controlled trial. JMIR Mhealth Uhealth . 2019;7(2):e12209. Available from: https://mhealth.jmir.org/2019/2/e12209/ Lally P, Van Jaarsveld CHM, Potts HWW, Wardle J. How are habits formed: Modelling habit formation in the real world. Eur J Soc Psychol . 2010;40(6):998–1009. Available from: https://repositorio.ispa.pt/bitstream/10400.12/3364/1/IJSP_998-1009.pdf Singh B, Murphy A, Maher C, Smith AE. Time to form a habit: A systematic review and meta-analysis of health behaviour habit formation and its determinants. Healthcare (Basel) . 2024;12(23):2488. Available from: https://www.mdpi.com/2227-9032/12/23/2488 Gollwitzer PM, Sheeran P. Implementation intentions and goal achievement: A meta‑analysis of effects and processes. In: Advances in Experimental Social Psychology . 2006;38:69–119. Available from: https://www.researchgate.net/publication/37367696 Adriaanse MA, Gollwitzer PM, De Ridder DTD, De Wit JBF, Kroese FM. Breaking habits with implementation intentions: A test of underlying processes. Pers Soc Psychol Bull . 2011;37(4):502–13. Available from: https://dspace.library.uu.nl/bitstream/handle/1874/380229/0146167211399102.pdf Palmer CA, Bower JL, Cho KW, Clementi MA, Lau S, Oosterhoff B, et al. Sleep loss and emotion: A systematic review and meta-analysis of over 50 years of experimental research. Psychol Bull . 2023;149(11):2314–48. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000410.pdf Kong Y, Yu B, Guan G, Wang Y, He H. Effects of sleep deprivation on sports performance and perceived exertion in athletes and non-athletes: a systematic review and meta-analysis. Front Physiol . 2025;16:1544286. Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2025.1544286/full Tadros M, Newby JM, Li S, Werner‑Seidler A. Psychological treatments to improve sleep quality in university students: systematic review and meta-analysis. PLoS One . 2025;20(2):e0317125. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317125 Locke EA, Latham GP. Building a practically useful theory of goal setting and task motivation: A 35‑year odyssey. Am Psychol . 2002;57(9):705–17. Available from: https://med.stanford.edu/content/dam/sm/s-spire/documents/PD.locke-and-latham-retrospective_Paper.pdf
    By Mohamad-Ali Salloum, PharmD January 16, 2026
    Reference: ACRP. “ICH E6(R2) to ICH E6(R3) Comparison.” (Jan 28, 2025) — terminology & essential records: PDF Clinical Trials Toolkit. “Summary of Key Changes in ICH E6(R3).” (Mar 25, 2025) — proportionality, QbD, safety reporting: Article PharmaEduCenter. “Key changes between ICH GCP E6 R3 and E6 R2.” (Aug 10, 2025) — structure & glossary: Blog CITI Program. “Navigating the Transition from ICH E6(R2) to ICH E6(R3).” (Mar 12, 2025) — consent & site practices: Blog IntuitionLabs. “ICH E6 (R3) Explained.” (Updated Jan 13, 2026) — rationale, data governance: Deep dive
    By Mohamad-Ali Salloum, PharmD December 6, 2025
    Simplify your day with essentialism: set priorities, eliminate the non‑essential, time‑block deep work, and measure progress for stress‑free productivity.
    By Mohamad-Ali Salloum, PharmD December 6, 2025
    A runner’s guide to VO₂ max: why plateaus happen and how to fix them with long intervals, tempo, hills, cross‑training and smart periodization.
    By Mohamad-Ali Salloum, PharmD December 3, 2025
    Explore the science of cognitive dissonance and learn how attitude change occurs, why dissonance matters, and what recent brain studies reveal about decision-making and self-control.
    More Posts
    Share by: